
Received 8 November 2023, accepted 27 November 2023, date of publication 4 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339220

Generalized m-Polar Fuzzy Planar
Graph and Its Application
UTTAM MONDAL 1, TANMOY MAHAPATRA 2, QIN XIN 3, AND MADHUMANGAL PAL 1
1Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India
2Department of Mathematics, Ramkrishna Mahato Government Engineering College, Purulia 723103, India
3Faculty of Science and Technology, The University of the Faroe Islands, Tórshavn 100, Faroe Islands

Corresponding author: Madhumangal Pal (mmpalvu@gmail.com)

The work of Uttam Mondal was supported by the University Grants Commission (UGC), Government of India, in July 2019, under Grant
1155/(CSIR-UGC NET DEC. 2018).

ABSTRACT Planarity of crisp graphs is a well-established field, whereas planarity within a fuzzy framework
has seen recent development and extensive exploration. In an m-polar fuzzy graph (mPFG), each node
and edge is associated with m-components, connected through minimal relationships. However, if one
desires to incorporate maximum, average, or other intermediate relationships between nodes and edges, the
mPFG concept becomes inadequate as in the m-polar fuzzy model, only minimum relation is considered.
To address this limitation, a generalized model of mPFG is introduced in this article, allowing for a
broader range of relationships to be considered simultaneously. This paper also discusses the properties
of generalized m-polar fuzzy environments and generalized m-polar fuzzy graphs (GmPFGs), highlighting
their isomorphism. Several significant findings and insights are presented in this paper. The article delves
into the properties and characteristics of generalized m-polar fuzzy planar graphs (GmPFPGs) and explores
various intriguing aspects related to them. Additionally, a novel concept of a generalized m-polar fuzzy dual
graph (GmPFDG) is introduced, derived from GmPFPGs. The paper establishes a relationship between the
dual of a GmPFG and GmPFG, examining their properties in the context of dual GmPFPGs. Lastly, the
article discusses an illustrative example of a social group network problem assessing the group’s activity
based on attributes such as cooperation, team spirit, awareness, controlling power, good behaviour, and
creativity.

INDEX TERMS Fuzzy graph, m-polar fuzzy graph, planarity of generalized m-polar fuzzy graph, dual of
generalized m-polar fuzzy planar graph, fuzzy face.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND RELATED WORKS
A fuzzy graph (FG) is a mathematical representation that
extends traditional graphs by allowing edges and vertices
to have degrees of membership rather than binary values,
thereby accommodating uncertainty and imprecision in
modeling relationships between entities. In a fuzzy graph,
edges signify varying degrees of connection or strength
of relationships, and vertices possess degrees of member-
ship reflecting their affiliation with the graph. FGs find
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applications in fields such as pattern recognition, decision-
making under uncertainty, and social network analysis,
offering a versatile framework for capturing and analyzing
complex relationships in scenarios where precise, binary
relationships are inadequate. FG theory has significantly
contributed to technical advancements, particularly in the
development of rule-based expert systems for engineers.
Moreover, graph theory plays a vital role in establish-
ing connectivity principles across various fields, including
algebra, geometry, topology, computer science, number
theory, optimization, and operations research. Rosenfeld’s
groundbreaking work in 1975 [1] marked the inception of
fuzzy relations and the development of FGs. Subsequent
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research, as demonstrated by Mathew and Sunitha [2],
Anjali and Mathew [3], Mordeson and Nair [4], and Sunitha
and Mathew [5], expanded upon this foundation, focusing
primarily on operations involving FGs, fuzzy paths, the
complement of FGs, fuzzy sub-graphs, and fuzzy trees.
Samanta and Pal [6] pioneered the concept of fuzzy planar
graphs (FPGs), and Samanta et al. further contributed to
the field by introducing fuzzy coloring for FGs in their
work [7]. Bhattacharya and Pal [8] conducted research on the
fifth sustainable development goal, which focuses on gender
equality in India. Their work involved the application of
Mathematics of uncertainty and the analysis of fuzzy graphs.
Additionally, they [9] explored the fuzzy tree covering
number for fuzzy graphs and its practical implications in the
context of the electricity distribution system. Furthermore,
they [10] applied fuzzy graph theory to address facility loca-
tion problems, with a specific case study in the Indian banking
system.

Many real-world challenges have been resolved using
data from various sources in our world. This method of
data collection exemplifies multi-polarity. The concept of
FG or bipolar FG cannot structure this kind of polarity
well. The introduction of m-polar fuzzy sets (mPFS) to
graph theory has been instrumental in addressing various
aspects of graph structures. Initially, Ghorai and Pal [11]
pioneered the field by establishing the concept of mPFG.
Subsequently, they expanded their research to include the
notion of mPFPGs [12], as well as investigating the dual
and faces of mPFPGs [13] and exploring some isomorphic
properties of mPFGs [14]. The genus value of mPFGs was
introduced by Mandal et al. [15]. Additionally, Mandal et al.
conducted a comprehensive study on various types of
arcs within mPFGs [16]. Akram and Adeel examined the
concept of m-polarity within FGs and line graphs [17],
while Akram et al. discussed specific edge features within
mPFGs [18]. Further contributions to the field include
Mahapatra and Pal’s introduction of fuzzy coloring for
mPFGs [19] and, more recently, Mahapatra et al.’s initiation
of fractional coloring on FGs [20]. Sasikala and Divya [21]
studied an innovative perspective on Fermatean neutrosophic
Dombi fuzzy graphs, and Uma and Nandhitha [22] explored
the application of fuzzy and neutrosophic Poisson distribution
in a rapid switching system. Abdel-Basset et al. [23] con-
ducted a study on sustainability assessment for the optimal
location of electric vehicle charging stations, presenting a
conceptual framework for integrating green energy into smart
cities. They also [24] performed an effective analysis of
risk assessment and mitigation strategies for photovoltaic
power plants based on real data, addressing strategies,
challenges, perspectives, and sustainability. Li et al. [25]
examined the MAGDM model with Aczel-Alsina aggre-
gation operators applied to neutrosophic entropy elements
within the context of neutrosophic multi-valued sets. In con-
trast, Bu et al. [26] delved into the topic of neutrosophic
Pseudo-t-Norm and its associated neutrosophic residual
implication.

Another characteristic of FGs is that their edge member-
ship value (MV) does not exceed the MVs of their adjacent
nodes. However, a feature of generalized FGs is that their
edge MVs are equal to any relation of their end node MVs.
That is, edge MV can be determined with different suitable
forms or relations like maximum, minimum, average, etc.,
between two nodes of that edge for different corresponding
problems. The same case for mPFGs has one restriction for
determining edge MVs, but in GmPFGs, the edge MVs can
be determined by using different relations or restrictions with
respect to different problems. For example, we have taken a
social group which is represented by G3PFG corresponding
to the attribute awareness, cooperation and good behaviors
of each person in the social group. Every person is treated
as a node, and the edges are attached by adjacent nodes.
Here, the MVs of the node are considered with respect to
the attributes of awareness, cooperation and good behavior
of the person. Every edge represents the relation between
two persons. MVs can be derived from the ‘relationship’
parameter between two persons in a group. Now, the question
is, ‘‘howwill a relationship be constructed?’’ The relationship
is defined as the maximum between two node MVs. This
relation will measure the maximum awareness between two
persons, cooperation between two persons and good behavior
between two persons.

The inequality restriction of edges is the base of FGs.
Samanta and Sarkar [27] presented the idea of generalized
graphs to eliminate such a requirement. In Samanta and
Sarkar [28], [29], [30], several generalized FG properties
were covered. Isomorphism in FGs was initially explored
by Bhutani in 1989, as documented in [31]. Nagoorgani
and Malarvizhi [32], [33], Nagorgani and Latha [34], [35]
added several intriguing aspects to it. The condition of
homomorphism and isomorphism in generalized FGs was
generalized by Samanta and Sarkar [36]. For fundamental
terminologies and definitions, see [37].

B. MOTIVATION OF THE WORK
In our real world, the resolution of numerous issues relies on
data gathered from diverse sources, illustrating the concept
of multi-polarity in data collection. Traditional graph models
like FGs or bipolar FGs may not adequately capture such
polarity. An mPFG is characterized by a single ‘‘minimum’’
relation between vertices and edges component-wise, while a
GmPFG can encompass multiple relations between vertices
and edges for determining edge MVs. This means that
edge MVs can be calculated using various suitable forms
or relationships, such as maximum, minimum, average, and
more, between the two nodes of that edge to address different
corresponding problems. Consider a social group graph
model aimed at assessing group activity based on attributes
like cooperation, team spirit, awareness, controlling power,
good behaviour, and creativeness. These attributes inherently
entail uncertainty, making the 6-polar fuzzy model a suitable
choice, while standard fuzzy, intuitionistic fuzzy, or bipolar
fuzzy systems are less effective in addressing this challenge.
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The m-polar fuzzy model is the preferred approach, yet it
too falls short when users require relationships beyond the
minimum between nodes and edges. Consequently, GmPFG
systems prove more effective in handling the intricacies of
fuzziness than any other fuzzy system. The incorporation
of illustrations and relevant theorems in creating and
interpreting such mPFGs enhances the existing GmPFG
concepts and bolsters their suitability for addressing complex
challenges.

C. NOVELTY OF THE WORK
GmPFGs are a relatively new concept in the field of fuzzy
set theory and graph theory, and their novelty lies in their
ability to represent and analyze complex relationships and
uncertainty in a wide range of applications. Here are some
aspects of their novelty:
(i) GmPFGs combine the principles of m-polar fuzzy set

theory, which deals with uncertainty and vagueness,
with graph theory, which focuses on representing
relationships between objects. This integration allows
for a more comprehensive representation of real-world
systems where relationships are not always crisp but
involve degrees of uncertainty.

(ii) An mPFG is characterized by a single ‘‘minimum’’
relation between vertices and edges component-wise,
while a GmPFG can encompass multiple relations
between vertices and edges for determining edge
MVs. This means that edge MVs can be calculated
using various suitable forms or relationships, such
as maximum, minimum, average, and more, between
the two nodes of that edge to address different
corresponding problems.

(iii) GmPFGs have found applications in various fields,
including social network analysis, image processing,
pattern recognition, transportation systems, and more.
Their ability to model uncertainty and imprecision in
these domains makes them a valuable tool for solving
real-world problems.

(iv) Researchers have developed a robust mathemati-
cal framework for GmPFGs, including definitions,
operations, and algorithms for various graph-related
tasks. This framework provides a solid basis for
conducting research and solving problems involving
GmPFGs.

In summary, the novelty of GmPFGs lies in their ability to
bridge the gap ofmPFG, providing a powerful framework for
modeling and analyzing uncertain and complex relationships
in various applications. As researchers continue to explore
and develop this concept, its potential to address real-world
problems with a high degree of uncertainty becomes increas-
ingly apparent.

D. FRAMEWORK OF THIS STUDY
This article is structured as follows: Section II discusses
a few important features that are necessary for this study.
We have mentioned the concept of generalized mPFG

and presented some theory on its aspect in section III.
We have initiated a brand-new conception called GmPFPGs
in section IV. We also investigated a detailed description of
it through proper examples and studied different types of
properties. Based on the above concept, we also investigated
some features. In section V, we have mentioned faces on
GmPFPG and discussed several features along with proper
justification. In section VI, we initiate a brand-new notion
of dual of GmPFPGs along with its different features.
In section VII, a practical implementation based on social
group to explain whether the group is active or not with
respect to attributes cooperation, team spirit, awareness,
controlling power, good behavior, creativeness, etc. has been
given. In section VIII, we have discussed the theoretical
implications, managerial insights, and policy implications of
the study. In section IX, we have outlined several advantages,
constraints and drawbacks inherent to the proposed study.
In sectionX, some concluding remarks of our study have been
made.

E. CONTRIBUTION OF THE WORK
The article makes a significant contribution by introducing
planarity within a generalizedm-polar fuzzy environment and
exploring its properties under isomorphism. It also delves into
the intricate details of GmPFPGs, establishes a relationship
between dual GmPFGs and GmPFGs, and offers a practical
application in analyzing group dynamics based on various
attributes, thus advancing the understanding of fuzzy graph
theory and its real-world applications. The article’s primary
contributions encompass the following points.

• Introduction of planarity in a generalized m-polar fuzzy
environment.

• Discussion of properties under isomorphism.
• Exploration of faces of GmPFPGs.
• Presentation of intriguing details about GmPFPGs.
• Initiation of a GmPFDG derived from GmPFPGs.
• Establishment of a relationship between dual GmPFGs

and GmPFGs.
•Discussion of properties in the context of dual GmPFPGs.
• Inclusion of a real-world application in social groups.
• Determination of group activity based on attributes such

as cooperation, team spirit, awareness, controlling power,
good behavior, and creativity.

F. NOTATIONS AND SYMBOLS
In Table 1, we have given some notations and abbreviation
forms which are applied in the entire work for the construc-
tion of the article.

II. PRELIMINARIES
In this context, let’s briefly revisit several definitions
associated with mPFG, including concepts such as strong
mPFG, complete mPFG, and paths within mPFG.
In this article, the notation ps : [0, 1]m → [0, 1] represents

the sth material projection mapping, with s ranging from 1 to
m, i.e., s = 1(1)m.
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TABLE 1. Full name and their abbreviation.

Definition 1 [14]: Consider H = (Ṽ , σ, γ ) as an mPFG
derived from the underlying crisp graph (UCG)H∗

= (Ṽ , Ẽ),
where both σ and γ are mappings from Ṽ to [0, 1]m and from
Ṽ × Ṽ to [0, 1]m, respectively. Here, σ and γ representmPFS
for ˜̃V and Ṽ × Ṽ , respectively, satisfying the relationship ps ◦
γ (x,w) ≤ {ps ◦ σ (x) ∧ ps ◦ σ (w)} for every s = 1(1)m and
(x,w) ∈ Ṽ × Ṽ , while also ensuring γ (x,w) = 0 for every
(x,w) ∈ (Ṽ × Ṽ − Ẽ).
Definition 2 [11]: H = (Ṽ , σ, γ ) is considered a

complete mPFG when ps ◦ γ (x,w) = {ps ◦ σ (x)∧ ps ◦ σ (w)}
holds for all x and w in Ṽ , with s ranging from 1 to m.
Definition 3 [14]: H = (Ṽ , σ, γ ) is classified as an mPF

strong graph when the equation ps ◦ γ (x,w) = {ps ◦ σ (x) ∧

ps ◦ σ (w)} holds for every (x,w) ∈ Ẽ , with s ranging from
1 to m.
Definition 4 [18]: Lets H = (Ṽ , σ, γ ) to be a mPFG as

well as P : x1, x2, . . . , xk to be a path in H . S(P) denotes
the strength of P, which is defined as S(P) = ( min

1≤s<j≤k
p1 ◦

γ (xs, xj), min
1≤s<j≤k

p2 ◦ γ (xs, xj), . . . , min
1≤s<j≤k

pm ◦ γ (xs, xj)) =

(γ n1 (xs, xj), γ
n
2 (xs, xj), . . . , γ

n
m(xs, xj)).

The strength of connectedness of the path between x1 and
xk is given as follows:
CONNG(x1, xk ) = (p1◦γ (xs, xj)∞, p2◦γ (xs, xj)∞, . . . , pm◦

γ (xs, xj)∞), where (ps ◦ γ (xs, xj)∞) = max
n∈N

(γ ns (xs, xj)).

Definition 5 [19]: For a mPFG, an edge (x,w), x,w ∈ Ṽ
is considered independently strong inH = (Ṽ , σ, γ ) if 1

2 {ps◦
σ (x) ∧ ps ◦ σ (w)} ≤ ps ◦ γ (x,w), s = 1(1)m. If not, it is
perceived as weak on its own. To measure the strength of an
edge (x,w) is

ps ◦ I (x,w) =
ps ◦ γ (x,w)

ps ◦ σ (x) ∧ ps ◦ σ (w)
, s = 1(1)m.

Definition 6 [11]: Consider two mPFGs, denoted as
H = (Ṽ , σ, γ ) and H ′

= (Ṽ ′, σ ′, γ ′), associated with the
UCGs H∗

= (Ṽ , Ẽ) and H ′∗
= (Ṽ ′, Ẽ ′), respectively.

An isomorphism between these graphs is defined as a
bijection denoted by g : Ṽ → Ṽ ′, which satisfies the

conditions:

ps ◦ σ (x) = ps ◦ σ ′(g(x)) and ps ◦ γ (x,w)

= ps ◦ γ ′(g(x), g(w))

for all x and w in Ṽ and for every s = 1(1)m. In such cases,
H is said to be isomorphic to H ′.
Definition 7 [11]: Between H = (Ṽ , σ, γ ) and H ′

=

(Ṽ ′, σ ′, γ ′), a co-weak isomorphism is a bijective homomor-
phism g : Ṽ → Ṽ ′ that satisfies

ps ◦ γ (x,w) = ps ◦ γ ′(g(x), g(w))

for all x,w ∈ Ṽ and every s = 1(1)m.

III. GENERALIZED M-POLAR FUZZY GRAPHS
Here, we will initiate a new concept of mPFG through which
we can handle a lot of relationships between nodes and
edges called generalized mPFG, where nodes and edges are
interlinked through many relationships like max, average,
difference, etc.
Definition 8: Consider V́ a set that is not void. Two

mappings are taken as below: C : V́ → [0, 1]m and D :

V́ × V́ → [0, 1]m. Also, let Ã = {(ps ◦ C(t), ps ◦ C(w))|ps ◦

D(t,w) > 0}, for every s = 1(1)m. The triplet (V́ ,C,D) is
said to be GmPFG in the event that one exists φ : Ã → [0, 1]
such that for all s = 1(1)m,

ps ◦ D(t,w) = φ((ps ◦ C(t), ps ◦ C(w))),

where t,w ∈ V́ . Here, ps ◦ C(t), s = 1(1)m, t ∈ V́ is the sth

MV of the node t and ps ◦D(t,w), s = 1(1)m, t,w ∈ V́ is the
sth MV of the edge (t,w). Here, in case all the components
of any edge are zero, i.e., (0, 0, . . . , 0), then for this case, the
edge does not exist.
Note 1: For GmPFG, the relation between node and edge

MVs are connected by φ : Ã → [0, 1] such that

ps ◦ D(t,w) = φ((ps ◦ C(t), ps ◦ C(w))),

every s = 1(1)m and t,w ∈ V́ . In this case, the domain of
φ is the set Ã of a pair of elements of C that are adjacent.
An element of Ã is now associated with an edgeMV. Suppose
we have taken a social group which is represented by G3PFG
corresponding to the attributes of awareness, cooperation and
good behavior of each person in the social group. Every
person is taken as a node, and adjacent nodes are connected by
edges. Here, the MVs of the node are considered with respect
to the attributes of awareness, cooperation and good behavior
of the person. Every edge represents the relation between two
persons. The MVs can be collected from the ‘relationship’
between two persons in a group. Now, the question is, ‘‘how
will relationship, i.e., φ be constructed?’’ For example, φ can
be assumed as

φ(ps ◦ C(t), ps ◦ C(w)) = ps ◦ C(t) ∨ ps ◦ C(w),

for every s = 1, 2, 3. This function will measure the
maximum awareness between two persons, cooperation
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between two persons and good behavior between two
persons.

Similarly, depending on the various situations, we can
choose the function φ : Ã → [0, 1] as follows

(a) φ(ps ◦ C(t), ps ◦ C(w)) = ps ◦ C(t) ∧ ps ◦ C(w),

(b) φ(ps ◦ C(t), ps ◦ C(w)) = ps ◦ C(t) ∨ ps ◦ C(w),

(c) φ(ps ◦ C(t), ps ◦ C(w)) =
1
2
(ps ◦ C(t) + ps ◦ C(w)),

(d) φ(ps ◦ C(t), ps ◦ C(w)) = ps ◦ C(t) × ps ◦ C(w)

for all s = 1(1)m and t,w ∈ V́ .
Note 2: In Definition 8 of GmPFG, if we consider the

function φ : Ã → [0, 1] as φ(ps ◦ C(t), ps ◦ C(w)) =

ps◦C(t)∧ps◦C(w) for every s = 1(1)m and for all (t,w) ∈ E ,
then for this case a GmPFG will be called strong mPFG. So,
we can easily form a strong mPFG from a GmPFG.
Example 1: Consider 0 = (V́ ,C,D) be a G3PFG. Let

V́ ={t1, t2, t3, t4} be the nodes set and {(t1, t3), (t1, t4), (t2, t3)}
be the edges set with C(t1) = (0.2, 0.3, 0.5),C(t2) =

(0.5, 0.3, 0.4),C(t3) = (0.6, 0.7, 0.2),C(t4) = (0.1, 0.4, 0.3).
Now, we have considered the function φ : Ã → [0, 1]
such that φ(ps ◦ C(x), ps ◦ C(w)) = ps ◦ C(x) ∨

ps ◦ C(w), for every s = 1(1)m and C(x),C(w)
indicate the MVs of nodes x and w respectively. Here,
Ã = {(C(t1),C(t3)), (C(t1),C(t4)), (C(t2),C(t3))} =

{((0.2, 0.3, 0.5), (0.6, 0.7, 0.2)), ((0.2, 0.3, 0.5), (0.1, 0.4,
0.3)), ((0.5, 0.3, 0.4), (0.6, 0.7, 0.2))}. Then D(t1, t3) =

(0.2∨ 0.6, 0.3∨ 0.7, 0.5∨ 0.2) = (0.6, 0.7, 0.5), D(t1, t4) =

(0.2, 0.4, 0.5), D(t2, t3) = (0.6, 0.7, 0.4). The pictorial
representation of G3PFG is shown in Fig. 1.

FIGURE 1. An example of G3PFG.

Definition 9: Take 0 = (V́ ,C,D) be a GmPFG. A edge
(t, u) is defined to be effective edge if ps◦D(t, u) ≥

1
2max{ps◦

C(t), ps◦C(u)}, for every s = 1(1)m and t, u ∈ V́ . A GmPFG
is said to be effective if it satisfies the relation ps ◦ D(t, u) ≥
1
2max{ps ◦ C(t), ps ◦ C(u)}, for every s = 1(1)m and for all
t, u ∈ V́ .

Example 2: From Example 1, we have seen that the edge
(t1, t4) is effective because the condition of effectiveness, i.e.,
ps ◦ D(t1, t4) ≥

1
2max{ps ◦ C(t1), ps ◦ C(t4)} has satisfied

for every s = 1, 2, 3. That is 0.2 > 1
2max{0.2, 0.1}, 0.4 >

1
2max{0.3, 0.4} and 0.5 > 1

2max{0.5, 0.3}. Similarly, the
edges (t1, t3) and (t2, t3) are effective. Therefore, the graph
0 is effective.
Definition 10: Let 0 be a GmPFG. If each node pair are

attached by effective edges, then 0 is said to be complete;
otherwise, it is called incomplete GmPFG.
Example 3: Let 0 = (V́ ,C,D) be a G3PFG with node set

{(a1, (0.4, 0.3, 0.6)), (a2, (0.3, 0.2, 0.5)), (a3, (0.2, 0.4,
0.7)), (a4, (0.6, 0.5, 0.4))} and edge set {(a1, a2), (a1, a3),
(a1, a4), (a2, a3), (a2, a4), (a3, a4)}. We define the function
φ : Ã → [0, 1], where Ã = {(ps ◦ C(a), ps ◦ C(b))|ps ◦

D(a, b) > 0}, such as φ(ps ◦C(a), ps ◦C(b)) =
1
2 (ps ◦C(a)+

ps◦C(b)), for every s = 1, 2, 3 and a, b ∈ V́ . With the help of
the above function, we have evaluated theMVs of all edges of
0, which are shown in Fig. 2. Now, we have seen that the edge

FIGURE 2. An example of complete G3PFG.

(a1, a2) is effective because the condition of effectiveness,
i.e., ps◦D(a1, a2) ≥

1
2max{ps◦C(a1), ps◦C(a2)} has satisfied

for every s = 1, 2, 3. That is 0.35 > 1
2max{0.4, 0.3}, 0.25 >

1
2max{0.3, 0.2} and 0.55 > 1

2max{0.6, 0.5}. Similarly, the
other edges (a1, a3), (a1, a4), (a2, a3), (a2, a4) and (a3, a4)
are effective. As a result, effective edges connect each pair
of nodes. Therefore, the graph 0 is a complete G3PFG.
Definition 11: Let 01 = (V́1,C1,D1) and 02 =

(V́2,C2,D2) be two GmPFGs. Also, let h̃ : V́1 → V́2,
φ1 : Ã1 → [0, 1] and φ2 : Ã2 → [0, 1] be the functions
where Ã1 = {ps◦C1(t)|t ∈ V́ }, for every s = 1(1)m and Ã2 =

{(ps ◦C2(t), ps ◦C2(u))|t, u ∈ V́2, (t, u) is an edge in 02}, for
every s = 1(1)m such that ps ◦ C2(t) = φ1(ps ◦ C1(h̃(t))) and
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ps ◦ D2(t, u) = φ2(ps ◦ D1(h̃(t), h̃(u))), for every s = 1(1)m.
After that, it is said that the function h̃ is a homomorphism
between two GmPFGs.
Definition 12: Let’s say that 01 = (V́1,C1,D1) and 02 =

(V́2,C2,D2) are two homomorphic GmPFGs. Now, consider
φ1, an identity mapping and h̃, a bijective homomorphism
from V́1 to V́2. After that, the isomorphism h̃ is called to be
weak between two GmPFGs.
Definition 13: Let’s say that 01 = (V́1,C1,D1) and 02 =

(V́2,C2,D2) are two homomorphic GmPFGs. Now, consider
φ2, an identity mapping and h̃, a bijective homomorphism
from V́1 to V́2. After that, the isomorphism h̃ is called to be
co-weak between two GmPFGs.
Definition 14: Suppose 01 = (V́1,C1,D1) and 02 =

(V́2,C2,D2) be two homomorphic GmPFGs. Now, consider
φ1 and φ2, both identity mapping and h̃, a bijective
homomorphism from V́1 to V́2. After that, h̃ is called to be
isomorphism between two GmPFGs.
Definition 15: Consider V́ a set that is not void and C

be an mPFS on V́ . Assume D = {((x,w),Dj(x,w)), j =

1(1)pxw : (x,w) ∈ V́×V́ }, where pxw = max{j|Dj(x,w) ̸= 0}
be an m-polar fuzzy multi-set of V́ × V́ . Consider Ã =

{(ps ◦ C(x), ps ◦ C(w))|ps ◦ Dj(x,w) > 0, j = 1(1)pxw},
for every s = 1(1)m. Then 0 = (V́ ,C,D) is called to be
generalized m-polar fuzzy multi-graph (GmPFMG) if there
exists a function φ : Ã → [0, 1] such that for every
s = 1(1)m,

ps ◦ Dj(x,w) = φ((ps ◦ C(x), ps ◦ C(w))),

s = 1(1)m, j = 1(1)pxw and for all x,w ∈ V́ . Here, C(x) and
D(x,w) stand in for the MV of the node x and the edge (x,w)
in 0, respectively. It should be noted that there could be more
than one edge connecting nodes x and w. It can be noted that
there may be multiple edges between the nodes x and w. The
number of edges between the nodes x and w is represented by
pxw, and the MV of the jth edge connecting them is denoted
by Dj(x,w).

IV. GENERALIZED M-POLAR FUZZY PLANAR GRAPHS
According to crisp graph theory, a graph is said to be planar
if it is drawn so that no two edges overlap other than at their
endpoints. It is referred to as non-planar if it is not. Again,
we are aware that any graph that contains either K5 or K3,3 is
also non-planar in the crisp meaning. This identical idea will
be examined in a GmPFPGs.

Let 0 = (V́ ,C,D) be a GmPFMG and the graph contains
just one crossover between the edges ((t, v),D(t, v)) and
((w, y),D(w, y)) for a particular geometric shapes. The graph
is called to not cross if D(t, v) = (1, 1, . . . , 1) and D(w, y) =

(0, 0, . . . , 0). Similarly, if ps ◦ D(t, v) = φ((ps ◦ C(t), ps ◦

C(v))), s = 1(1)m has value near to 1 and ps ◦ D(w, y) =

φ((ps ◦ C(w), ps ◦ C(y))), s = 1(1)m has value near to 0, the
intersectionwon’t matter for planarity. If ps◦D(t, v) = φ((ps◦
C(t), ps ◦C(v))) and ps ◦D(w, y) = φ((ps ◦C(w), ps ◦C(y))),
s = 1(1)m are close to 1, after that the crossover becomes
vital for planarity. Therefore, a value corresponding to the

point is assigned, known as the intersecting value, if there is
a point where two edges cross.
Definition 16: An edge’s ((t, v),Dj(t, v)) strength is deter-

mined by I(t,v) = (I1(t,v), I
2
(t,v), . . . , I

m
(t,v)), where I s(t,v) =

ps◦Dj(t,v)
min{ps◦C(t),ps◦C(v)}

, s = 1(1)m, j = 1(1)ptv and t, v ∈ V́ . Here
ps ◦Dj(t, v) = φ((ps ◦C(t), ps ◦C(v))), for every s = 1(1)m,
j = 1(1)ptv and t, v ∈ V́ .
Definition 17: Consider 0 = (V́ ,C,D) be a GmPFMG.

An edge (u, v) in 0 is called to be generalized m-polar fuzzy
strong if for every s = 1(1)m, I s(u,v) ≥ 0.5. Instead, it is
referred to as generalized m-polar fuzzy weak.

When two edges cross at a point in a GmPFMG, that point
is specified as follows. Let in aGmPFMG0 = (V́ ,C,D), two
edges ((u1, v1),Dj(u1, v1)) and ((u2, v2),Dk (u2, v2)) cross
at a point P, where k and j are fixed positive integers.

IP = (I1P, I
2
P, . . . , I

m
P ), where I

s
P =

I s(u1,v1)
+I s(u2,v2)
2 , s =

1(1)m represents the intersecting value at the point P. The
‘planarity’ of a GmPFMG diminishes as the number of
intersecting points rises. The idea of a GmPFPG is described
below using these ideas.
Definition 18: Let 0 = (V́ ,C,D) be a GmPFMG, and for

a particular geometric shape, the points of crossing between
the edges are symbolized by Q1,Q2, . . . ,Qk . Then 0 is
called to be GmPFPG with degree of planarity (DOP) Q =

(Q1,Q2, . . . ,Qm), where Qs =
1

1+{IsQ1+IsQ2+···+IsQk }
, s =

1(1)m.
Note 3: Q is bounded, since for every s = 1(1)m, 0 <

Qs ≤ 1.
Example 4: Consider 0 = (V́ ,C,D) be a GmPFMG

which is shown in Fig. 3. Let V́ = {u1, u2, u3, u4} be the node
set with C(u1) = (0.3, 0.2, 0.4), C(u2) = (0.5, 0.4, 0.6),
C(u3) = (0.3, 0.4, 0.6) and C(u4) = (0.2, 0.6, 0.7). Now,
we have considered the function φ : Ã → [0, 1] such
that

ps ◦ Dj(u,w) = φ((ps ◦ C(u), ps ◦ C(w))) (1)

= min{ps ◦ C(u), ps ◦ C(w)} (2)

for every s = 1(1)m, j = 1(1)p and C(u),C(w) indicate
the MVs of nodes u and w respectively. Using (2), we have
determined all the MVs of edges, which is shown in
Fig. 3.
Q1 is a point between the edges ((u1, u3), (0.3, 0.2, 0.4))

and ((u2, u4), (0.2, 0.4, 0.6)), Q2 is also between the edges
((u1, u3), (0.3, 0.2, 0.4)) and ((u2, u4), (0.2, 0.4, 0.6)). Now,
the strength of an edge (a, b) is I s(a,b) = ps ◦ I(a,b) =

ps◦D(a,b)
ps◦C(a)∧ps◦C(b)

, for every s = 1, 2, 3 and D(a, b) indicates
the MV of the edge (a, b) and C(a),C(b) indicate the MVs
of the vertices a and b respectively. Then, for the edge
((u1, u3), (0.3, 0.2, 0.4)), the strength is I(u1,u3) = (1, 1, 1),
and the edge ((u2, u4), (0.2, 0.4, 0.6)), is I(u2,u4) = (1, 1, 1).
Now, at the point P, we calculate the value IP = (I1P, I

2
P, I

3
P)

which represents intersecting value at that point, where

IsP =
I s(u1,v1)

+I s(u2,v2)
2 for s = 1, 2, 3. The values that

intersect are IQ1 = (I1Q1
, I2Q1

, I3Q1
) = (1, 1, 1) and IQ2 =
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FIGURE 3. A G3PFMG.

(I1Q2
, I2Q2

, I3Q2
) = (1, 1, 1). Now, the DOP is defined byQ =

(Q1,Q2,Q3), where Qs =
1

1+(IsQ1+IsQ2 )
, s = 1, 2, 3. As a

result, the DOP of the G3PFMG is ( 1
1+1+1 ,

1
1+1+1 ,

1
1+1+1 ),

i.e., (0.33, 0.33, 0.33).
Now we will check the DOP of the graph for other forms

of φ function in the following ways:
(i) If we consider the function φ in the form

φ((ps ◦ C(u), ps ◦ C(w))) = max{ps ◦ C(u), ps ◦ C(w)},

(3)

for every s = 1(1)m and C(u),C(w) indicate the MVs
of nodes u and w respectively. Using the function (3),
we can determine all MVs of the edges which are
((u1, u2), (0.5, 0.4, 0.6)), ((u1, u3), (0.3, 0.4, 0.6)), ((u1, u3),
(0.3, 0.4, 0.6)), ((u2, u3), (0.5, 0.4, 0.6)), ((u2, u4), (0.5, 0.6,
0.7)). Then in the similar way we can determine the
strength values of all the edges which are I(u1,u2) =

(1.67, 2, 1.5), I(u1,u3) = (1, 2, 1.5), I(u1,u3) = (1, 2, 1.5),
I(u2,u3) = (1.67, 1, 1), I(u2,u4) = (2.5, 1.5, 1.67). In this
case, the intersecting values of the intersecting points
Q1 and Q2 respectively are IQ1 = (1.75, 1.75, 1.58) and
IQ2 = (1.75, 1.75, 1.58). So, the DOP of the G3PFMG is
(0.22, 0.22, 0.24).
(ii) If we consider the function φ in the form

φ((ps ◦ C(u), ps ◦ C(w))) =
1
2
{ps ◦ C(u) + ps ◦ C(w)}, (4)

for every s = 1(1)m and C(u),C(w) indicate the MVs of
nodes u and w respectively. Then this case the DOP of the
G3PFMG is (0.26, 0.26, 0.3).
(iii) If we consider the function φ in the form

φ((ps ◦ C(u), ps ◦ C(w))) = ps ◦ C(u) × ps ◦ C(w) (5)

for every s = 1(1)m. Then, in this case, the DOP of the
G3PFMG is (0.56, 0.5, 0.43).
Theorem 1: Let 0 = (V́ ,C,D) be a GmPFMG with

φ((ps ◦ C(u), ps ◦ C(v))) = min{ps ◦ C(u), ps ◦ C(u)}, for
every s = 1(1)m and for all u, v ∈ V́ . Then the DOP
Q = (Q1,Q2, . . . ,

Qm) is given by Qs =
1

1+r , s = 1(1)m, here, r is the number
of locations where the edges of 0 crosses.
Proof: Since 0 is a GmPFMG, we get

ps ◦ Dj(u, v) = φ((ps ◦ C(u), ps ◦ C(v))) (6)

for each s = 1(1)m, j = 1(1)puv and u, v ∈ V́ . Given,

φ((ps ◦ C(u), ps ◦ C(v))) = min{ps ◦ C(u), ps ◦ C(v)} (7)

for every s = 1(1)m and for each u, v ∈ V́ . Let
Q1,Q2, . . . ,Qr be the intersection locations of the edges in
0. In 0, for the edge (u, v), from Definition 16, we have
I s(u,v) =

ps◦Dj(u,v)
min{ps◦C(u),ps◦C(v)}

=
min{ps◦C(u),ps◦C(v)}
min{ps◦C(u),ps◦C(v)}

= 1,s =

1(1)m, using 6 and 7. Therefore, for the location Q1,
which is a location of crossing between edges (u, v) and
(x, y), the crossing value is IQ1 = (I1Q1

, I2Q1
, . . . ImQ1

) =

(
I1(u,v)+I

1
(x,y)

2 ,
I2(u,v)+I

2
(x,y)

2 , . . . ,
Im(u,v)+I

m
(x,y)

2 ) = ( 1+1
2 , 1+1

2 , . . . ,
1+1
2 ) = (1, 1, . . . , 1). Therefore IQr = (1, 1, . . . , 1), where r

is the number of intersection locations. Now, for s = 1(1)m,
Qs =

1
1+(IsQ1+IsQ2+···+IsQr )

=
1

1+r . Therefore, the planarity

Q is given by Q = (Q1,Q2, . . . ,Qm), where Qs =
1

1+r ,
s = 1(1)m.
Theorem 2: Let 0 = (V́ ,C,D) be a GmPFPG with DOP

Q = (Q1,Q2, . . . ,Qm) such that Qs > 0.5 for s = 1(1)m.
Hence, there can only be one crossing of generalized m-polar
fuzzy strong edges (SEs) in 0.
Proof:TakeQ1 andQ2 be the locations of crossing between

two generalized m-polar fuzzy SEs in 0 and this the least
possibility for 0 in the said sense. For any generalized
m-polar fuzzy SE ((u, v),Dj(u, v)), I s(u,v) ≥ 0.5, s =

1(1)m and j = 1(1)puv. Thus, the crossing of SEs
((u, v),Dj(u, v)) and ((x, y),Dk (x, y)), where k and j are fixed

positive integers and for s = 1(1)m,
I s(u,v)+I

s
(x,y)

2 ≥ 0.5, that is
IsQ1

≥ 0.5. Likewise, IsQ1
≥ 0.5. So, 1 + IsQ1

+ IsQ2
≥ 2,

i.e., Qs =
1

1+IsQ1+IsQ2
≤ 0.5. Here, for s = 1(1)m, Qs > 0.5,

which is a contradiction. As a result, there can be no more
than one point awarded.
Theorem 3: Let 0 = (V́ ,C,D) be a GmPFPG with DOP

Q = (Q1,Q2, . . . ,Qm). If Qs ≥ 0.67, s = 1(1)m, so there
is no location of crossing between two generalized m-polar
fuzzy SEs for 0.
Proof:Let us assume that between two generalizedm-polar

fuzzy SEs ((u, v),Dj(u, v)) and ((x, y),Dk (x, y)), where k and
j are fixed positive integers, the point of intersection be P. For
any generalized m-polar fuzzy SE ((u, v),Dj(u, v)), we get
I s(u,v) ≥ 0.5, s = 1(1)m. In case of finding minimum score
of I s(u,v), I

s
(x,y), I

s
P = 0.5, s = 1(1)m. Then, Qs =

1
1+0.5 <

0.67 for s = 1(1)m, a contradiction. As a result, 0 does not
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have any locations where two generalized m-polar fuzzy SEs
cross.
Definition 19: AGmPFPG0withDOPQ = (Q1,Q2, . . . ,

Qm) is said to be strong GmPFPG if Qs ≥ 0.67, s = 1(1)m.
Edges with sufficient strength play a crucial role in

modeling certain projects, while those with low strength can
be disregarded. These significant edges are referred to as
‘‘considerable edges,’’ as defined below.
Definition 20: Let 0 = (V́ ,C,D) be a GmPFPG. Let

f be a given number, such that 0 < f < 0.5. An edge
((u, v),D(u, v)) is said to be considerable edge if for s =

1(1)m, ps◦D(u,v)
min{ps◦C(u),ps◦C(v)}

≥ f . Otherwise, it is called a
non-considerable edge. For a GmPFMG 0, a multi-edge
((u, v),Dj(u, v)) is said to be considerable edge if for s =

1(1)m, ps◦Dj(u,v)
min{ps◦C(u),ps◦C(v)}

≥ f , j = 1(1)puv.
Theorem 4: Let 0 be a GmPFPG with DOP Q =

(Q1,Q2, . . . ,Qm) be such that Qs > 0.5, s = 1(1)m
and considerable number f . Then the number of points of
intersection between considerable edges in 0 is at most [ 1f ]
or 1

f − 1 according to 1
f is not an integer or an integer

respectively.
Proof: Let 0 = (V́ ,C,D) be a GmPFPG where D =

{((u, v),Dj(u, v)), j = 1(1)puv : (u, v) ∈ V́ × V́ }. Let 0 <

f < 0.5 be the considerable number. For any considerable
edge ((u, v),Dj(u, v)), we have ps ◦ Dj(u, v) ≥ f × min{ps ◦

C(u), ps ◦ C(v)}, s = 1(1)m, where ps ◦ Dj(u, v) = φ(ps ◦

C(u), ps ◦ C(v)), for every s = 1(1)m. This implies that
I s(u,v) ≥ f for s = 1(1)m. Let Q1,Q2, . . . ,Qq be the q
numbers intersecting points between the considerable edges.
Also let, between the considerable edges ((u, v),Dj(u, v)) and
((x, y),Dk (x, y)), where k and j are fixed positive integers, the
location of crossing be Q1. We have I s(u,v) ≥ f and I s(x,y) ≥ f
for s = 1(1)m. This implies that I s(u,v) + I s(x,y) ≥ 2f , i.e.,
I s(u,v)+I

s
(x,y)

2 ≥ f for s = 1(1)m. Then IsQ1
=

I s(u,v)+I
s
(x,y)

2 ≥ f ,
i.e., IsQ1

≥ f for s = 1(1)m. Now, we have taken the sum
of crossing values on q locations, i.e.,

∑q
n=1 I

s
Qn ≥ fq for

s = 1(1)m,

or, 1 +

q∑
n=1

IsQn ≥ 1 + fq

or,
1

1 +
∑q

n=1 I
s
Qn

≤
1

1 + fq

or, Qs ≤
1

1 + fq
, by the Definition 18.

HenceQs ≤
1

1+fq , for s = 1(1)m and givenQs > 0.5, for s =

1(1)m. This implies that 0.5 < Qs ≤
1

1+fq , for s = 1(1)m.

That is, 0.5 <
1

1 + fq

or,
1
2

<
1

1 + fq
or, 2 > 1 + fq

or, 1 > fq.

So, q < 1
f . Hence the values of q are given by q ={

[ 1f ], if
1
f is not an integer,

1
f − 1, if 1

f is an integer.
Theorem 5: Complete GmPFGs K5 and K3,3 have a DOP

of (0.5, 0.5, . . . , 0.5).
Proof: The DOP for a complete GmPFG is Q =

(Q1,Q2, . . . ,Qm), whereQs =
1

1+r and r represents number
of locations of crossings of edges in 0. We know in crisp
that one crossover between two edges cannot be avoided for
a particular geometric shape of a complete graph K5 and
K3,3. Therefore, r = 1 for the complete K5 and K3,3
GmPFG. Therefore, Qs =

1
1+r =

1
1+1 = 0.5. Hence,

the complete GmPFG K5 and K3,3 have with DOP (0.5,
0.5, . . . , 0.5).
Theorem 6: The complete GmPFGs K5 and K3,3 can not

be strong GmPFGs.
Proof: The entire GmPFG K5 and K3,3 are GmPFGs

with DOP (0.5, 0.5, . . . , 0.5), respectively, are obtained from
Theorem 5. Again, according to Definition 19, a GmPFPG is
considered to be strong if Qs ≥ 0.67, for s = 1(1)m. In this
instance, the requirement for a strong GmPFG is not fulfilled.
Hence, the complete GmPFG K5 and K3,3 can not be strong
GmPFG.

V. FACES OF GENERALIZED M-POLAR FUZZY PLANAR
GRAPH
One of the most crucial components of a GmPFPG is its face.
A GmPFG’s faces are each region bordered by a few edges.
There must be at least two edges for a GmPFG to have two
faces. There must be one face on each and every GmPFPG
that is referred to as the outer face. One face of the GmPFPG
may be decreased from the supplied GmPFPG if one edge of
theGmPFG is eliminated.We’ll define the face of theGmPFG
next.
Definition 21: Let 0 = (V́ ,C,D) be a GmPFPG and D =

{((t, v),Dj(t, v)) : (t, v) ∈ V́ × V́ and j = 1(1)p}. Hence, the
face of GmPFG of0 is a region bounded by edges.E ⊆ V́×V́
of 0.
Definition 22: In a GmPFPG, a face’s strength is indicated

by the notation (I1F , I2F , . . . , ImF ) and is defined by I sF =

∧{I s(t,v) : ∀(t, v) ∈ E}, for s = 1(1)m.

Definition 23: For every s = 1(1)m, a face of theGmPFPG
is considered to be strong if I sF ≥ 0.5. It is regarded to beweak
otherwise.
Example 5: To explain the strength of faces of a G3PFPG

and the powerful faces we see as G3PFPG 0 =

(V́ ,C,D) having node set V́ = {u1, u2, u3, u4, u5} with
C(u1) = (0.2, 0.3, 0.2), C(u2) = (0.6, 0.4, 0.2), C(u3) =

(0.2, 0.4, 0.6), C(u4) = (0.3, 0.4, 0.5) and C(u5) =

(0.4, 0.6, 0.5). Now, we have considered the function φ :

Ã → [0, 1] such that

ps ◦ Dj(t, v) = φ((ps ◦ C(t), ps ◦ C(v))) (8)

=
1
2
(ps ◦ C(t) + ps ◦ C(v)), (9)
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for every s = 1(1)m, j = 1(1)p and C(t),C(v) indicate
the MVs of nodes t and v respectively. Using (9), we have
determined all the MVs of edges, which is shown in Fig. 4.

FIGURE 4. An example of G3PFPG.

There are three faces with the symbols F1, F2, and F3, and
faceF1 is bounded by the edges (u1, u4), (u4, u5), (u5, u1) and
face F2 is bounded by the edges (u2, u3), (u3, u4), (u4, u2)
and F3 is an outer face of the given G3PFG. In Table 2, the
strength values of edges are listed.

TABLE 2. Strength values of edges of G3PFPG, shown in Fig. 4.

Now, the strength of the faces F1,F2 and F3 are
(1.16, 1.16, 1), (1.25, 1, 1.1) and (1.16, 1, 1) respectively.
Therefore, F1,F2 and F3 are strong faces of 0.

VI. GENERALIZED M-POLAR FUZZY DUAL GRAPH
This section introduces the dual idea of the GmPFPG, the
GmPFDG, and a new GmPFG. In an GmPFDG, the vertices
are the strong faces of the GmPFPG, and if two vertices’
corresponding faces share an edge, then there is an edge
between them.
Definition 24: Assuming that 0 = (V́ ,C,D) be a

GmPFPG and F1,F2, . . . ,Fp are its strong faces of 0. Then
01 = (V́1,C1,D1) be a GmPFDG of 0, where the node will
be us corresponding to the strong face Fs, for s = 1, 2, . . . , p
and there will be a edge between two nodes us and uj if
their corresponding faces have a common edge, that is, for
each common face between Fs and Fj, there exists a edge in
between us and uj of 01 and the MV of the node uk will be
determined by the relation ps ◦ C1(uk ) = max{ps ◦ Dj(t, v) :

j = 1(1)p}, s = 1(1)m, where (t, v) be a boundary edge of
the Fk .

The following method provides the MV of edges: j =

1(1)p, ps ◦ Dj1(t, v) = ps ◦ Dj(w, y), s = 1(1)m and
((w, y),Dj(w, y)) be one of the edges shared by two faces.
Be the number of common edges between two faces Fk , Fl ,
and ps ◦ ((t, v),Dj(t, v)) be one of the edges of 01.

If the equivalent GmPFPG contains a pendant edge and the
MV of the self loop is the same as the pendent edge, there
will be a self-loop in the GmPFDG.

Due to the fact that the GmPFDG is derived from
the GmPFPG, the GmPFDG’s planarity value will be
(Q1,Q2, . . . ,Qm), where Qs = 1, s = 1(1)m.
Example 6: To explain G3PFDG concept, we consider

a G3PFPG 0 = (V́ ,C,D) having node set V́ =

{u1, u2, u3, u4, u5} with C(u1) = (0.4, 0.5, 0.3), C(u2) =

(0.5, 0.4, 0.5), C(u3) = (0.6, 0.5, 0.8), C(u4) =

(0.3, 0.7, 0.6) and C(u5) = (0.5, 0.6, 0.4). Now, we have
considered the function φ : Ã → [0, 1] such that

ps ◦ Dj(t,w) = φ((ps ◦ C(t), ps ◦ C(w))) (10)

= max{ps ◦ C(t)), ps ◦ C(w)} (11)

for every s = 1(1)m, j = 1(1)p and C(t),C(w) indicate
the MVs of nodes t and w respectively. Using (11), we have
determined all the MVs of edges, which is shown in Fig. 5.

FIGURE 5. A generalized 3PFPG.

We now determine the strength of the edges, and Table 3
has the strength values.

TABLE 3. Strength values of edges of G3PFPG, shown in Fig. 5.
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Here, we can see that every edge has a strength
value that is more than or equal to 0.5. Therefore,
in the given G3PFPG, all edges are SEs. There are four
faces, designated F1,F2,F3,F4, in the given G3PFPG
depicted in Fig. 5. The following criteria define the faces’
boundaries:

(a) The SEs (u1, u2), (u2, u4), (u4, u1) surround the faceF1.
(b) The SEs (u2, u3), (u3, u4), (u4, u2) surround the

face F2.
(c) The SEs (u1, u4), (u4, u5), (u5, u1) surround face F3.
(d) The face F4 on the supplied G3PFPG in Fig. 5 is an

outer face.
The faces’ strengths are then calculated and are listed in

Table 4.

TABLE 4. Strength values of faces of G3PFPG, shown in Fig. 5.

Here, we can see that every face has a strength value that
is more than or equal to 0.5. Thus, every face is a strong face.
All of the faces are strong; thus we take the nodes of each
strong face into consideration. For s = 1, 2, 3, 4, let vs be the
corresponding nodes of the faces Fs. The dual G3PFG’s node
set is then V́1 = {v1, v2, v3, v4}, and if the matching faces Fs
andFj share a boundary edge, a edgewill exist between vs and
vj. The border between Fs and Fj’s faces has the same number
of edges as the distance between vs and vj. Fig. 6 presents the
equivalent dual graph 01 of the supplied G3PFPG0 of Fig. 5.

FIGURE 6. Dual G3PFPG of Fig. 5.

Note 4: Assume that 0 is a strong GmPFPG whose
number of nodes, edges, and strong faces are v, e and f ,
respectively. If 01 is the dual graph of 0 in the generalized
m-polar fuzzy, then

(a) f is the same as the number of nodes in 01,
(b) 01 has the same number of edges as e,
(c) 01 has the same number of faces as v.
Note 5: The number of strong faces in a GmPFDG of

a GmPFPG is fewer than or equal to the number of
nodes in the GmPFPG, assuming that the GmPFDG does
not contain all of the strong generalized m-polar fuzzy
faces.
Theorem 7: Let 01 be a GmPFDG of a GmPFPG 0 =

(V́ ,C,D) having all SEs when φ(ps ◦ C(u), ps ◦ C(z)) =

∧{ps ◦ C(u), ps ◦ C(z)}, for every s = 1(1)m and u, z ∈ V́ .
Then, the MV of edges of GmPFPG and GmPFDG are the
same.
Proof: Since 0 is a GmPFPG having all SEs then we have

φ(ps ◦ C(u), ps ◦ C(z)) = min{ps ◦ C(u), ps ◦ C(z)}, for
each s = 1(1)m and u, z ∈ V́ and let 01 = (V́1,C1,D1)
be the GmPFDG of 0. Since 0 is planar, 01 has no points
where any two edges intersect. Let 0’s strong faces be
{F1,F2, . . . ,Fk}. From the definition of GmPFDG we know
that for j = 1(1)p, ps ◦ Dj1(t, v) = ps ◦ Dj(w, y), s = 1(1)m
and ((w, y),Dj(w, y)) be one of the edges shared by two faces.
Be the number of common edges between two faces Fk , Fl ,
and ps ◦ ((t, v),Dj(t, v)) be one of the edges of 01. Make
(w, y) a boundary edge on the0. Therefore, for any j = 1(1)p,
the dual graphs ((w, y),Dj(w, y)) and ((t, v),Dj1(t, v)) will be
identical. Given that there are no weak edges, both 0 and
01 have the same number of edges by Note 4. Therefore, the
proof is completed.
Theorem 8: Give 01 and 02 two GmPFGs, where 01 is

a planar. If 01 and 02 are isomorphic, then 02 is also a
GmPFPG with the same DOP as 01.
Proof: Let h̃ : 01 → 02 be a generalized m-polar

fuzzy isomorphism between 01 and 02. The nodes and edges
MV between 01 and 02 are preserved because h̃ is an
isomorphism between two GmPFGs, that is, ps ◦ C1(x) =

ps ◦C2(h̃(x)) and ps ◦D1(x,w) = ps ◦D2(h̃(x), h̃(w)) for all x
andw inV1 and for every s = 1(1)m and01 is also planar. As a
result, the MVs of the nodes and edges will be the same in
both 01 and 02, and the number of points at which two edges
cross will likewise be the same. So, 02 is planer. Since 02 has
the same number of vertices, edges, and is planar, it is indeed a
GmPFGwith the same DOP as 01. The DOP is, therefore, the
same in 01 and 02. This demonstrates that 02 is a GmPFPG
with the same DOP as 01.
Theorem 9: For any s = 1(1)m and u, z ∈ V́ , there is a

co-weak isomorphism between the GmPFPG 0 = (V́ ,C,D)
with φ(ps ◦C(u), ps ◦C(z)) = ∧{ps ◦C(u), ps ◦C(z)} and the
dual of the graph 0.
Proof: Given 0 be a GmPFPG with φ(ps ◦ C(u), ps ◦

C(z)) = min{ps ◦ C(u), ps ◦ C(z)}, for every s = 1(1)m
and u, z ∈ V́ . Let 01 and 02 be the duals of 0 and 01,
respectively. We need to demonstrate that 0 and 02 are
co-weak isomorphic. Since they are mirror images of one
another, the number of strong faces in 01 is equal to the
number of nodes in 0. Again, because 02 is a dual of 01,
the two are equivalent in terms of the number of nodes and the
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number of strong faces in 01. Therefore, there are exactly the
same number of nodes in 0 and 02. Additionally, the number
of edges in a GmPFPG and those in its dual GmPFG are equal,
by Note 4. Again, we know from the definition of dual that the
MV of edges in the GmPFDG and GmPFPG are equal. A co-
weak isomorphism between 0 and 02 can thus be defined.
Hence completes the proof.

VII. APPLICATION
In this section, we discuss an application of GmPFG. We are
aware that generalized FGs have a variety of applications
in decision-making challenges and are utilized to manage
uncertainty resulting from issues in our daily lives. However,
in this case, we have applied the polarity and planarity
concepts to generalized FGs. Here, we take into account a
social group to explain the value of G3PFPG. We have used
the G3PFPG concept.

People have a natural tendency to form social groups,
whether they are friendships, families, or entire communities.
This inclination is fundamental to the human experience.
A social group refers to any gathering of two or more
individuals who recognize their connection as a unique social
entity. Social groups play a crucial role in daily life and help
individuals navigate their environment.

A. MODEL CONSTRUCTION
Suppose we have taken a social group of 10 persons in
Figure 7, which is represented by G3PFPG 0̃ = (V́ ,C,D)
corresponding to the attributes cooperation, controlling
power and team spirit of each person of the social group.
These attributes are taken as the first, second and third
components of the graph. Every person is treated as a node,
and the connection between any two persons is represented
by an edge.

Now, we show that the connectivity of each person to
another person in the social group is strong or not, which
indicates whether the group is active or not depending on
the attributes of the person’s cooperation, controlling power,
team spirit, creativeness, etc.

To find out whether the social group is strong or not
i.e., active or not, we use the DOP of the G3PFPG model,
which represents the social group with respect to the
attributes of persons cooperation, controlling power and team
spirit.

B. ILLUSTRATION OF MEMBERSHIP VALUES
Here, MVs of the node are considered with respect to the
attributes of cooperation, controlling power and team spirit
of the person. The node MVs of the G3PFPG 0̃ shown in
Figure 7 are considered as in Table 5.
Every edge represents the relation or connection between

two persons. The MVs can be derived from the param-
eter ‘relationship’ between two persons in a group. The
relationship is defined as the average between two nodeMVs.

FIGURE 7. Graphical representation of social group in G3PFPG.

TABLE 5. Vertex membership values of 0̃.

That is

φ(ps ◦ C(x), ps ◦ C(w)) =
1
2
{ps ◦ C(x) + ps ◦ C(w)},

for every s = 1, 2, 3. This relation will measure the average
MVs of cooperation between two persons, controlling power
between two persons and team spirit between two persons.
Now we have to show whether the social group is active or
inactive, determining the DOP of the model of G3PFPG with
respect to the attributes cooperation, controlling power and
team spirit of the person. For illustration, the MVs of edges
are listed in Table 6.

For determining the DOP of G3PFPG, firstly, we find out
the strength of all the edges in 0̃. Now, the the strength of
an edge (a, b) is I s(a,b) = ps ◦ I(a,b) =

ps◦D(a,b)
ps◦C(a)∧ps◦C(b)

, for
every s = 1, 2, 3 and D(a, b) indicates the MV of the edge
(a, b) and C(a),C(b) indicate the MVs of the vertices a and
b respectively. So the strength of the edge (p1, p2) is I(p1,p2) =

( p1◦D(a,b)
p1◦C(a)∧p1◦C(b)

,
p2◦D(a,b)

p2◦C(a)∧p2◦C(b)
,

p3◦D(a,b)
p3◦C(a)∧p3◦C(b)

) = ( 0.25
0.3∧0.2 ,

0.35
0.6∧0.1 ,

0.4
0.5∧0.3 ) = (1.25, 3.5, 1.33). Similarly, we have

determined the strength of all the edges which are listed in
the Table 7.

Clearly, all edges are strong, whichwe have seen in Table 7.
In the G3PFPG model, there are five intersecting points
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TABLE 6. Membership values of each edge of 0̃.

TABLE 7. Strength values of each edge of 0̃.

denoted as I1, I2, I3, I4, I5. At point P, we compute the value
IP, which represents the intersecting value at that location.
IP is calculated as

(
I1P, I

2
P, I

3
P

)
, where each component is

given by IsP =
I s(u1,v1)

+I s(u2,v2)
2 for s = 1, 2, 3. So one

intersecting point is I1 whose value is II1 = (I1I1 , I
2
I1
, I3I1 ) =

(
I1(p2,p8)

+I1(p1,p9)

2 ,
I2(p2,p8)

+I2(p1,p9)

2 ,
I3(p2,p8)

+I3(p1,p9)

2 ) = ( 2+1.33
2 ,

1.5+1.25
2 , 1.16+1

2 ) = (1.66, 1.37, 1.08). Similarly, the inter-
secting values of the points I2, I3, I4 and I5 are respectively

given by (2.56, 1.31, 2.25), (2.56, 1.14, 1.31), (2.65, 1.31,
1.25) and (1.33, 1.12, 2.06). Now, the DOP is defined by
Q = (Q1,Q2,Q3), where Qs =

1
1+(IsI1+IsI2+···+IsI5 )

, s =

1, 2, 3. For s = 1, Q1 =
1

1+(1.66+2.56+2.56+2.65+1.33) = 0.08.
Similarly, for s = 2, Q2 = 0.13 and for s = 3, Q3 =

0.11. Therefore the DOP of 0̃ is Q = (Q1,Q2,Q3) =

(0.08, 0.13, 0.11).

C. DECISION MAKING
The DOP of the G3PFPG 0̃ is (0.08, 0.13, 0.11). We know
that if the DOP of the graph is greater than or equal to
0.67, then the planar graph is strong. But in this model,
each component of the DOP of G3PFPG 0̃ is not more than
0.67 by Definition 19. This means that the corresponding
planar graph is not strong. This implies that the connectivity
of each person to another person in the social group is not
strong, which indicates the corresponding social group is not
active depending on the attributes of the person’s cooperation,
controlling power and team spirit. So the bonding of the group
is not better. Hence, this social group is an inactive group.

VIII. THEORETICAL IMPLICATIONS, MANAGERIAL
INSIGHTS, AND POLICY IMPLICATIONS OF THE STUDY
The theoretical implications of GmPFGs represent a signifi-
cant advancement in the field of FG theory. The introduction
of GmPFGs extends the traditional notions of mPFGs by
incorporating multiple levels of uncertainty and polarization.
An mPFG is characterized by a single ‘‘minimum’’ relation
between vertices and edges component-wise, while a GmPFG
can encompass multiple relations between vertices and
edges for determining edge MVs. This means that edge
MVs can be calculated using various suitable forms or
relationships, such as maximum, minimum, average, and
more, between the two nodes of that edge to address different
corresponding problems. This allows for a more nuanced
representation of relationships in complex systems where the
degree of membership may vary across different dimensions.
Theoretical developments in GmPFGs provide a richer
framework for modeling real-world phenomena, fostering a
deeper understanding of uncertainty and variability in graph
structures.

From a managerial perspective, insights derived from
GmPFGs can be invaluable in decision-making processes.
Managers often deal with uncertain and dynamic environ-
ments, and the ability to model and analyze relationships with
multiple dimensions of uncertainty provides a more realistic
representation of the complexities they face. GmPFGs offer
a versatile tool for managers to assess and adapt their
strategies in situations where traditional crisp graph models
fall short. This can lead to more informed decision-making,
improved risk management, and a better grasp of the intricate
relationships within the systems they oversee.

Policy implications arise from the potential application
of GmPFGs in diverse domains such as transportation,
communication networks, and social systems. Policymakers
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can leverage the insights provided by these graphs to design
more flexible and adaptive policies that account for the
inherent uncertainties in real-world systems. The incorpo-
ration of GmPFG theory into policy frameworks enables a
more nuanced understanding of complex interdependencies,
fostering policies that are better aligned with the dynamic
nature of modern societies. This theoretical framework can
thus contribute to the development of policies that are
more resilient and responsive to the challenges posed by
uncertainty and variability in various domains.

IX. ADVANTAGES AND LIMITATIONS OF THE PROPOSED
WORK
In our real world, the resolution of numerous issues relies on
data gathered from diverse sources, illustrating the concept
of multi-polarity in data collection. Traditional graph models
like FGs or bipolar FGs may not adequately capture such
polarity. An mPFG is characterized by a single ‘‘minimum’’
relation between vertices and edges component-wise, while a
GmPFG can encompass multiple relations between vertices
and edges for determining edge MVs. This means that
edge MVs can be calculated using various suitable forms
or relationships, such as maximum, minimum, average, and
more, between the two nodes of that edge to address different
corresponding problems. For example, we have taken a social
group which is represented by G3PFG corresponding to
the attribute awareness, cooperation and good behaviors of
each person in the social group. Every person is treated
as a node, and the edges are attached by adjacent nodes.
Here, the MVs of the node are considered with respect to
the attributes of awareness, cooperation and good behavior
of the person. Every edge represents the relation between
two persons. MVs can be derived from the ‘relationship’
parameter between two persons in a group. Now, the question
is, ‘‘howwill a relationship be constructed?’’ The relationship
is defined as the maximum between two node MVs. This
relation will measure the maximum awareness between two
persons, cooperation between two persons and good behavior
between two persons.

Some additional benefits of the proposed model include:
(i) In this work, individuals can analyze MVs within a

multi-polar fuzzy environment in a specific manner.
(ii) A GmPFG can encompass multiple relations between

vertices and edges for determining edge MVs. This
means that edge MVs can be calculated using various
suitable forms or relationships.

(iii) GmPFGs provide a more expressive modeling frame-
work than traditionalmPFGs. They can capture a wider
range of relationships and associations among elements
in the graph.

(vi) In decision-making processes, GmPFGs can provide
more informative and accurate results by considering
membership degrees. This can lead to more robust and
well-informed decisions.

(v) GmPFGs can model complex systems, such as bio-
logical networks, social networks, and ecological

systems, where the relationships between elements are
inherently uncertain and dynamic.

GmPFGs are mathematical structures that extend the
concept of traditional mPFGs to incorporate fuzzy sets and
fuzzy logic. While they are a useful tool for modeling
uncertainty and imprecision in various applications, they also
have some limitations. Here are some limitations of GmPFGs:

(i) In this environment, it is not permissible to utilize the
negative MVs of the characters.

(ii) Non-heterogeneous types of data are not suitable for
use in this context.

(iii) When the MVs of the characters are provided within
various interval-valued m-polar fuzzy environments,
the application of GmPFG is not feasible.

(vi) GmPFGs can become quite complex, especially when
dealing with a large number of nodes and edges.

(v) Acquiring and modeling fuzzy data to construct
GmPFGs can be challenging. Fuzzy data may not
always be readily available or easy to represent
accurately.

Despite these limitations, GmPFGs can be valuable in
scenarios where uncertainty and imprecision play a crucial
role, such as in decision support systems and expert systems.
However, their use should be carefully considered in light
of these limitations and the specific characteristics of the
problem being addressed.

X. CONCLUSION
In this article, we explore the concept of planarity within
a generalized m-polar fuzzy environment and discuss their
properties under isomorphism. Several important findings
are presented, including a comprehensive examination of the
faces of GmPFPGs and various intriguing facts about them.
We also introduce a GmPFDG derived from GmPFPGs and
establish a relationship between the dual of GmPFGs and
GmPFGs, delving into their properties within the context
of dual GmPFPGs. Additionally, we present a real-life
application that assesses a social group’s activity based
on attributes such as cooperation, team spirit, awareness,
controlling power, good behaviour, and creativity. The future
scope of GmPFGs holds great potential for further develop-
ment and application in various fields. Some areas of future
research and application include: GmPFGs can be applied
to network analysis, such as social networks, transportation
networks, and communication networks, to model and
analyze uncertain or imprecise connections and relationships.
Additionally, our ongoing research endeavors to extend
the concept of GmPFGs into diverse domains, including
intuitionistic FGs, bipolar FGs, picture FGs, and fuzzy soft
graphs, among others.
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