TY - JOUR
T1 - Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water
AU - Larsen-Olsen, Thue T.
AU - Andreasen, Birgitta
AU - Andersen, Thomas R.
AU - Bottiger, Arvid P. L.
AU - Bundgaard, Eva
AU - Norrman, Kion
AU - Andreasen, Jens W.
AU - Jorgensen, Mikkel
AU - Krebs, Frederik C.
PY - 2012
Y1 - 2012
N2 - Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry as physical probe, confirming the identity of the layered structure. The devices were completed with a back electrode of either Cu tape or evaporated Ag. Under standard solar spectrum irradiation (AM1.5G), current–voltage characterization (J–V) yielded an open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF), and power conversion efficiency (PCE) of 0.24 V, 0.5 mA cm−2, 25%, and 0.03%, respectively, for the best double slot-die coated cell. A single slot-die coated cell using the same aqueous inks and device architecture yielded a Voc, Jsc, FF, and PCE of 0.45 V, 1.95 mA cm−2, 33.1%, and 0.29%, respectively.
AB - Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry as physical probe, confirming the identity of the layered structure. The devices were completed with a back electrode of either Cu tape or evaporated Ag. Under standard solar spectrum irradiation (AM1.5G), current–voltage characterization (J–V) yielded an open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF), and power conversion efficiency (PCE) of 0.24 V, 0.5 mA cm−2, 25%, and 0.03%, respectively, for the best double slot-die coated cell. A single slot-die coated cell using the same aqueous inks and device architecture yielded a Voc, Jsc, FF, and PCE of 0.45 V, 1.95 mA cm−2, 33.1%, and 0.29%, respectively.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000300653800004&KeyUID=WOS:000300653800004
U2 - 10.1016/j.solmat.2011.08.026
DO - 10.1016/j.solmat.2011.08.026
M3 - Article
SN - 1879-3398
VL - 97
SP - 22
EP - 27
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
ER -