Abstract
GPS is widely used for monitoring large civil engineering structures in real time or near real time. In this paper the use of PPP GPS for monitoring large structures is investigated. The bridge deformation results estimated using double differenced measurements is used as the truth against which the performance of kinematic PPP in a real-time scenario for bridge monitoring is assessed. The towers’ datasets with millimetre level movement and suspension cable dataset with centimetre/decimetre level movement were processed by both PPP and DD data processing methods. The consistency of tower PPP time series indicated that the wet tropospheric delay is the major obstacle for small deflection extraction. The results of suspension cable survey points indicate that an ionospheric-free linear measurement is competent for bridge deformation by PPP kinematic model, the frequency domain analysis yields very similar results using either PPP or DD.
This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.
This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.
Original language | English |
---|---|
Pages (from-to) | 925-937 |
Number of pages | 13 |
Journal | Advances in Space Research |
Volume | 60 |
DOIs | |
Publication status | Published - May 2017 |
Keywords
- Real time
- Bridge deflection monitoring
- Precise point positioning
- linear combinations
- Real-time bridge deflection monitoring
- Un-differenced linear combination observation