TY - JOUR
T1 - Physiological responses and performance in a simulated trampoline gymnastics competition in elite male gymnasts
AU - Jensen, Peter
AU - Scott, Suzanne
AU - Krustrup, Peter
AU - Mohr, Magni
N1 - doi: 10.1080/02640414.2013.803591
PY - 2013/7
Y1 - 2013/7
N2 - AbstractPhysiological responses and performance were examined during and after a simulated trampoline competition (STC). Fifteen elite trampoline gymnasts participated, of which eight completed two routines (EX1 and EX2) and a competition final (EX3). Trampoline-specific activities were quantified by video-analysis. Countermovement jump (CMJ) and 20 maximal trampoline jump (20-MTJ) performances were assessed. Heart rate (HR) and quadriceps muscle temperature (Tm) were recorded and venous blood was drawn. A total of 252 ± 16 jumps were performed during the STC. CMJ performance declined (P < 0.05) by 3.8, 5.2 and 4.2% after EX1, EX2 and EX3, respectively, and was 4.8% lower (P < 0.05) than baseline 24 h post-competition. 20-MTJ flight time was ~1% shorter (P < 0.05) for jump 1?10 after EX2 and 24 h post STC. Tm increased (P < 0.05) to ~39°C after the warm-up, but declined (P < 0.05) 1.0 and 0.6ºC before EX2 and EX3, respectively. Peak HR was 95?97% HRmax during EX1-3. Peak blood lactate, plasma K+ and NH3 were 6.5 ± 0.5, 6.0 ± 0.2 mmol · l?1 and 92 ± 10 µmol · l?1, respectively. Plasma CK increased (P < 0.05) by ~50 and 65% 0 and 24 h after STC. In conclusion, a trampoline gymnastic competition includes a high number of repeated explosive and energy demanding jumps, which impairs jump performance during and 24 h post-competition.
AB - AbstractPhysiological responses and performance were examined during and after a simulated trampoline competition (STC). Fifteen elite trampoline gymnasts participated, of which eight completed two routines (EX1 and EX2) and a competition final (EX3). Trampoline-specific activities were quantified by video-analysis. Countermovement jump (CMJ) and 20 maximal trampoline jump (20-MTJ) performances were assessed. Heart rate (HR) and quadriceps muscle temperature (Tm) were recorded and venous blood was drawn. A total of 252 ± 16 jumps were performed during the STC. CMJ performance declined (P < 0.05) by 3.8, 5.2 and 4.2% after EX1, EX2 and EX3, respectively, and was 4.8% lower (P < 0.05) than baseline 24 h post-competition. 20-MTJ flight time was ~1% shorter (P < 0.05) for jump 1?10 after EX2 and 24 h post STC. Tm increased (P < 0.05) to ~39°C after the warm-up, but declined (P < 0.05) 1.0 and 0.6ºC before EX2 and EX3, respectively. Peak HR was 95?97% HRmax during EX1-3. Peak blood lactate, plasma K+ and NH3 were 6.5 ± 0.5, 6.0 ± 0.2 mmol · l?1 and 92 ± 10 µmol · l?1, respectively. Plasma CK increased (P < 0.05) by ~50 and 65% 0 and 24 h after STC. In conclusion, a trampoline gymnastic competition includes a high number of repeated explosive and energy demanding jumps, which impairs jump performance during and 24 h post-competition.
KW - jump performance
KW - fatigue
KW - muscle temperature
KW - muscle damage
KW - recovery
U2 - 10.1080/02640414.2013.803591
DO - 10.1080/02640414.2013.803591
M3 - Article
SN - 0264-0414
VL - 31
SP - 1761
EP - 1769
JO - Journal of Sports Sciences
JF - Journal of Sports Sciences
IS - 16
ER -