@book{7febd20e53b4401297f563045322d98a,
title = "Canonical Forms and Algorithms for Steiner Trees in Uniform Orientation Metrics",
abstract = "We present some fundamental structural properties for minimum length networks (known as Steiner minimum trees) interconnecting a given set of points in an environment in which edge segments are restricted to λ uniformly oriented directions. We show that the edge segments of any full component of such a tree contain a total of at most four directions if λ is not a multiple of 3, or six directions if λ is a multiple of 3. This result allows us to develop useful canonical forms for these full components. The structural properties of these Steiner minimum trees are then used to resolve an important open problem in the area: does there exist a polynomial time algorithm for constructing a Steiner minimum tree if the topology of the tree is known? We obtain a simple linear time algorithm for constructing a Steiner minimum tree for any given set of points and a given Steiner topology.",
keywords = "steiner tree problem, uniform orientation metric, fixed topology, normed plane, fixed orientation metric, canonical form",
author = "Marcus Brazil and Thomas, {Doreen A.} and Jia Weng and Martin Zachariasen",
year = "2006",
language = "English",
volume = "44",
series = "Technical report",
publisher = "Dept. of computer science",
number = "06/11",
}